

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1H, 1 µm absolut

Das magnetkodierte Weg- und Winkelmesssystem BML bietet mit der Sensorbaureihe S1H hochauflösende Systeme in robusten Metallgehäusen an.

Baureihe S1H, absolut Inhalt

S1H, 1 µm absolut

Allgemeine Daten
SSI-Schnittstelle, BiSS-C-Schnittstelle
Magnetband-Maßkörper
Anschlusskabel
Digital-Display, CAM-Controller

■ www.balluff.com BALLUFF | 23

Baureihe S1H, absolut Allgemeine Daten

1 µm absolut

Merkmale

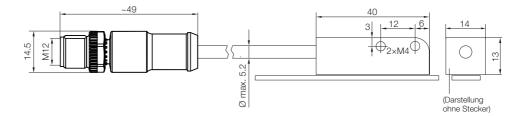
- absolutes Messsystem
- zusätzliches Sin-/Cos-Analogsignal für schnelle Regelanwendungen
- ±7 µm Systemgenauigkeit
- 1 µm Auflösung
- kleinste Bauform
- robustes Metallgehäuse
- längs oder quer zum Maßkörper montierbar
- Signalperiode 1 mm

Achtung!

Vor Konstruktion, Installation und Inbetriebnahme bitte die Hinweise der Betriebsanleitung beachten. www.balluff.de

Baureihe S1H, absolut

SSI-Schnittstelle, BiSS-C-Schnittstelle



		Weg- und Winkel- messsystem	
Baureihe	BML-S1H		
Ausgangssignal	Absolut: SSI oder BiSS C, zusätzliches Analogsignal Sin/Cos 1 V _{ss}	Baureihe S1H	
Datenformat	16 Bit (BML-S1HM3AA) oder 18 Bit (BML-S1HM3CA)	Allgemeine Daten	
Auflösung	< 1 μm (= 1000/1024 μm pro LSB)	SSI-Schnittstelle,	
Typenbezeichnung	BML-S1H6_C-M3_A-DO-KA00,3-S284	BiSS-C- - Schnittstelle	
Wiederholgenauigkeit	±1 Inkrement	Magnetband-	
Gesamtsystemgenauigkeit	±7 μm	Maßkörper	
Betriebsspannung	5 V ±5 %	Anschlusskabel	
Stromaufnahme bei 5 V Betriebsspannung	< 50 mA + Stromaufnahme der Steuerung, bei 120 Ω Lastwiderstand	Digital-Display, CAM-Controller	
Leseabstand Sensor/Band max.	0,35 mm (ohne Abdeckband)	CAIVI-CONTIONEI	
Messlänge max.	64 mm (M3AA) oder 256 mm (M3CA)	Baureihe S1G	
Polteilung Analogspur	1 mm	244101110014	
Verfahrgeschwindigkeit max.	5 m/s (absolut)	Baureihe S1F	
Messwertrate	f _{STANDARD} = 50 kHz (SSI), 10 MHz (BiSS C)		
Betriebstemperatur	−20+80 °C	Baureihe	
Lagertemperatur	−30+85 °C	S2B/S2E/S1C	
Gehäusematerial	Aluminium		
Schutzart	IP 67	Zubehör	

Alle Daten gelten in Verbindung mit Maßkörper BML-M02-A33... (siehe Seite 27)

Definitionen

Bestellbeispiel: Sensorkopf

Vorzugstypen

■ BML-S1H1-S6QC-M3CA-D0-KA00,3-S284 (BML0393)

Anfahrtsrichtung längs zum Maßkörper, SSI-Schnittstelle, Binärcode steigend, 256-er Längenkodierung, Pigtail 0,3 m mit M12-Stecker

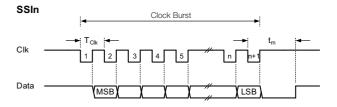
■ BML-S1H2-S6QC-M3CA-D0-KA00,3-S284 (BML0394)

Anfahrtsrichtung quer zum Maßkörper, SSI-Schnittstelle, Binärcode steigend, 256-er Längenkodierung, Pigtail 0,3 m mit M12-Stecker

www.balluff.com **BALLUFF** 25

SSI-Schnittstelle, BiSS-C-Schnittstelle

SSI-Schnittstelle


Die SSI-Schnittstelle bietet die synchron-serielle Datenübertragung und passt für Steuerungen verschiedener Hersteller.

Sichere Signalübertragung auch bei Kabellängen bis 400 m zwischen Steuerung und Wegaufnehmer. Dies garantieren die besonderen störsicheren RS485/422-Differenzialtreiber und -empfänger. Eventuelle Störsignale werden wirksam unterdrückt.

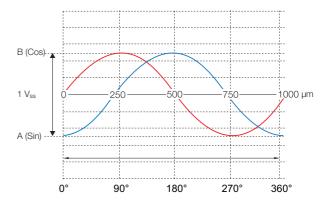
BML-Standard hat ab Werk folgende Einstellungen für die Positionsausgabe, die nachträglich nicht mehr verändert werden können:

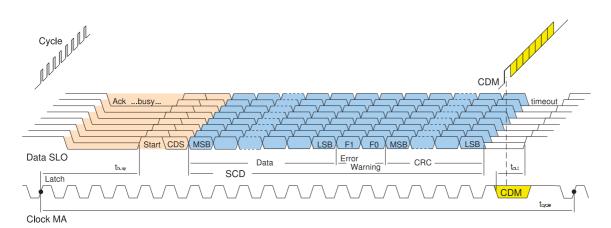
■ BML-S1H_-S6_C-M3A...: 16 Bit ■ BML-S1H_-S6_C-M3C...: 18 Bit

■ binär- oder Gray-codiert

BiSS-C-Schnittstelle

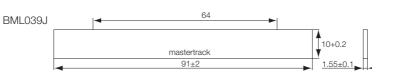
BiSS C steht für die synchron-serielle Datenübertragung und passt für Steuerungen verschiedener Hersteller.

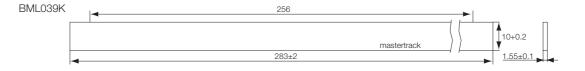

Im Unterschied zu SSI erfolgt die Datenübertragung bidirektional. Im BiSS-C-Modus (kontinuierlich) können am Sensorkopf ohne Unterbrechung der Sensordaten Konfigurationseinstellungen vorgenommen werden.


BiSS C unterstützt CRC, Warn- und Fehlernachrichten.

Zusätzlich zum SSI- oder BiSS-Signal wird ein analoges Echtzeitsignal Sin/Cos 1 V_{ss} für hochdynamische Regelanwendungen ausgegeben.

Zusätzliches analoges Echtzeitsignal Sin/Cos 1 Vss


Baureihe S1H, absolut


Magnetband-Maßkörper

Baureihe	Magnetband-Maßkörper	Magnetband-Maßkörper	
Ausgangssignal	für BML-S1H mit Messlänge 64 mm	für BML-S1H mit Messlänge 256 mm	
Bestellcode	BML039J	BML039K	
Typenbezeichnung	BML-M02-A33-A3-M0009-A	BML-M02-A33-A3-M0028-C	
Länge	91 mm	283 mm	
Messlänge	64 mm	256 mm	
Material Magnetband-Maßkörper	Gummiferrit, Träger Edelstahl	Gummiferrit, Träger Edelstahl	
Material Abdeckband	Edelstahl	Edelstahl	

Magnetkodiertes Weg- und Winkel-messsystem

Baureihe S1H Allgemeine Daten

SSI-Schnittstelle, BiSS-C-Schnittstelle

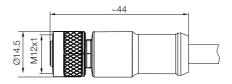
Magnetband-Maßkörper Anschlusskabel

Digital-Display, CAM-Controller

Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E/S1C


Zubehör

Grundlagen und Definitionen

Baureihe S1H, absolut **Anschlusskabel**

Zubehör		Anschlusskabel M12	
		12-polig, Buchse gerade	
Baureihe		BML-S1HS284	
Länge 2 m	Bestellcode	BCC09MW	
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-020-C009	
Länge 5 m	Bestellcode	BCC09MY	
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-050-C009	
Länge 10 m	Bestellcode	BCC09MZ	
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-100-C009	
Länge 15 m	Bestellcode	BCC09N0	
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-150-C009	
Länge 20 m	Bestellcode	BCC09N1	
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-200-C009	
Material		PUR, mit Stecker, umspritzt, schwarz	
Beschreibung/weitere Daten		■ Kabel: Ø 4,9 mm, 12×0,08 mm²	
		■ Biegeradius:	
		15×D (bewegt), 7,5×D (unbewegt)	
		■ Temperaturbereich: -25 °C+70 °C	

Baureihe S1H, absolut

Digital-Display, CAM-Controller

Magnetkodiertes Weg- und Winkel-messsystem

Baureihe S1H Allgemeine Daten

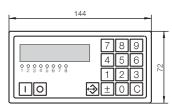
SSI-Schnittstelle, BiSS-C-Schnittstelle

Magnetband-Maßkörper Anschlusskabel Digital-Display, CAM-Controller

Baureihe S1G


Baureihe S1F

Baureihe S2B/S2E/S1C


Zubehör

Grundlagen und Definitionen

Baureihe	BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
	Digital-Display	CAM-Controller
	SSI-Schnittstelle	SSI-Schnittstelle
Bestellcode	BAE0069	BAE006F
Typenbezeichnung	BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
Merkmale	■ 7 1/2-stellige Anzeige mit Vorzeichen	■ 8 Ausgänge programmierbar
	■ LED-Anzeige 14 mm hohe, rote	■ 8 richtungsabhängige Schaltpunkte
	7-Segment-Ziffern	möglich
	■ Messwerte skalierbar	■ LED-Anzeige 14 mm hohe rote
	■ Anzahl der Kommastellen einstellbar	7-Segment-Ziffern, 6-stellig
	■ Nullpunkt einstellbar	Schaltpunkte kontrollierbar über LEDs auf
	■ Betriebsspannung 1032 V	der Frontplatte
	■ 2 programmierbare Relais-Ausgänge,	■ 300 Schaltpunkte auf bis zu
	jeweils als Endschalter/Komparator	15 Programme aufteilbar
	Nocke	OT- bzw. Nullpunktverschiebung
	■ 2-Punkt-Regler	einstellbar
	■ 1 konfigurierbarer Eingang	dynamische Totzeitkompensation separat
	externes Nullsetzen	für jeden Schaltpunkt
	■ Festhalten des Anzeigewerts	zur Parallelschaltung mehrerer
	■ integrierte Geberversorgung	BDD-CC 08
	300 mA, 5 V oder 24 V	■ integrierte Geberversorgung
	■ isoliertes DIN-Gehäuse zum Einbau in	300 mA, 5 V oder 24 V
	Frontplatte (Spannbügel im Lieferumfang	■ isoliertes DIN-Gehäuse zum Einbau in
	enthalten)	Frontplatte (Spannbügel im Lieferumfang
		enthalten)
		on a latery

Gehäusetiefe 110 mm

Gehäusetiefe 110 mm

BALLUFF www.balluff.com 29

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1G, 1 µm absolut

Das absolut kodierte Wegmesssystem BML-S1G bietet hohe Auflösungen bei großen Messlängen.

Das robuste, am Boden mit Edelstahl gekapselte Metallgehäuse schützt vor elektromagnetischen Einflüssen und lässt einen zuverlässigen Betrieb auch in stark verschmutzten Umgebungen zu. Durch die absolute Kodierung steht der Positionswert sofort nach dem Einschalten zur Verfügung. Die Einbautoleranzen und das LED-Feedback machen die Einrichtung und Montage zum Kinderspiel. Die Diagnosefunktion ermöglicht eine schnelle Fehlererkennung und sorgt so für kurze Stillstandzeiten bei der Einrichtung und wenn Fehler auftreten.

Baureihe S1G, absolut Inhalt

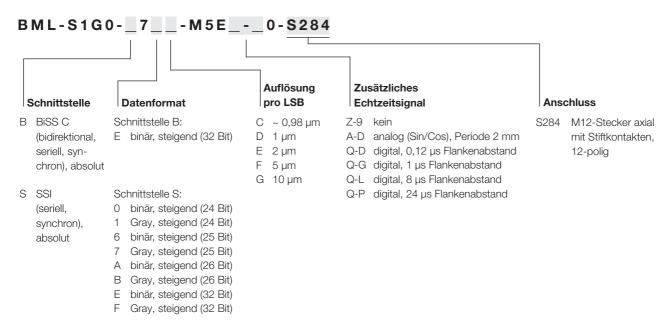
S1G, 1 µm absolut

Allgemeine Daten
SSI-Schnittstelle, BiSS-C-Schnittstelle
Magnetband-Maßkörper
Anschlusskabel
Digital-Display, CAM-Controller

Baureihe S1G, absolut

Allgemeine Daten

1 µm absolut



Merkmale

- absolutes Messsystem
- zusätzliche Echtzeitsignale für schnelle Regelanwendungen (Sin/Cos oder RS422)
- ±20 µm Systemgenauigkeit
- 1 µm Auflösung
- robustes Metallgehäuse
- kinderleichte Installation mit mehrfarbiger LED
- große Einbautoleranzen
- Signalperiode 2 mm
- große Länge bis 48 m

Bestellbeispiel: Sensorkopf

Vorzugstypen

■ BML-S1G0-S7ED-M5EA-D0-S284 (BML041H)

SSI-Schnittstelle, 1 µm Auflösung, zusätzliches Echtzeitsignal Sin/Cos, M12-Stecker, 12-polig

■ BML-S1G0-B7ED-M5EZ-90-S284 (BML042T)

BiSS-C-Schnittstelle, 1 µm Auflösung, ohne Echtzeitsignal, M12-Stecker, 12-polig

für große Längen

Baureihe S1G, absolut

SSI-Schnittstelle, BiSS-C-Schnittstelle

Baureihe	BML-S1G
Ausgangssignal	Absolut: SSI oder BiSS C, zusätzliches Echtzeitsignal Sin/Cos 1 Vss oder RS422
Datenformat	24, 25, 26 oder 32 Bit
Auflösung	~0,98, 1, 2, 5 oder 10 µm
Typenbezeichnung	BML-S1G0-B/S7M5E0-S284
Wiederholgenauigkeit	±1 Inkrement
Gesamtsystemgenauigkeit	±20 μm
Betriebsspannung	5 V ±5 % und 1028 V DC
Stromaufnahme	70 mA bei 24 V DC Betriebsspannung
Leseabstand Sensor/Band max.	0,8 mm (ohne Abdeckband)
Messlänge max.	48 m
Polteilung Feininterpolationsspur	2 mm
Verfahrgeschwindigkeit max.	10 m/s
Messwertrate	f _{STANDARD} = 50 kHz (SSI), f _{STANDARD} = 10 MHz (BiSS C)
Betriebstemperatur	−20+70 °C
Lagertemperatur	−25+85 °C
Gehäusematerial	Zink, Oberfläche vergütet
Schutzart	IP 67

nenetle enemen

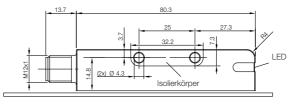
Magnetkodiertes Weg- und Winkelmesssystem

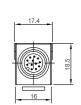
Baureihe S1H

Baureihe S1G Allgemeine Daten

SSI-Schnittstelle, BiSS-C-Schnittstelle

Magnetband-Maßkörper Anschlusskabel Digital-Display, CAM-Controller

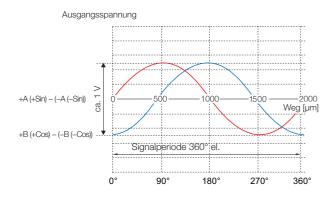

Baureihe S1F

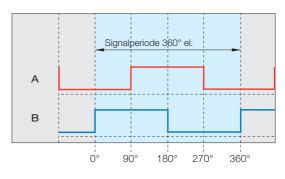

Baureihe S2B/S2E/S1C

Zubehör

Grundlagen und Definitionen

Alle Daten gelten in Verbindung mit Maßkörper BML-M02-A33... (siehe Seite 35)




Zusätzliches analoges, inkrementelles Echtzeitsignal (BML-S1G0-_ _ _-M5E**A**-_0-...)

Zusätzlich zum SSI- oder BiSS-Signal wird ein analoges Echtzeitsignal Sin/Cos 1 V_{SS} für hochdynamische Regelanwendungen ausgegeben.

Zusätzliches digitales, inkrementelles Echtzeitsignal (BML-S1G0-_ _ _ -M5E**Q-**_0-...)

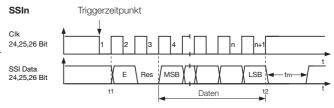
Zusätzlich zum SSI- oder BiSS-Signal wird ein digitales differenzielles Spannungssignal an die Steuerung (RS422) ausgegeben.

■ www.balluff.com

SSI-Schnittstelle, BiSS-C-Schnittstelle

SSI-Schnittstelle

Die SSI-Schnittstelle bietet die synchron-serielle Datenübertragung und passt für Steuerungen verschiedener Hersteller.

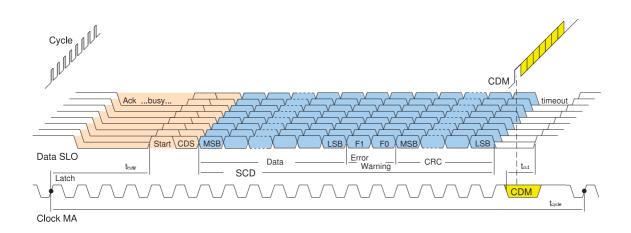

Sichere Signalübertragung auch bei Kabellängen bis 400 m zwischen Steuerung und Wegaufnehmer. Dies garantieren die besonderen störsicheren RS485/422-Differenzialtreiber und -empfänger. Eventuelle Störsignale werden wirksam unterdrückt.

BML-Standard hat werkseitig folgende Einstellungen für die Positionsausgabe, die nachträglich nicht mehr verändert werden können:

wahlweise 24, 25, 26 oder 32 Bit

war iiweise 24, 25, 20 oder

■ binär- oder Gray-kodiert

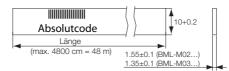

BiSS-C-Schnittstelle

BiSS C steht für die synchron-serielle Datenübertragung und passt für Steuerungen verschiedener Hersteller.

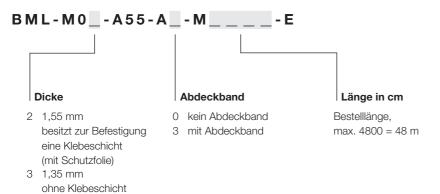
Im Unterschied zu SSI erfolgt die Datenübertragung bidirektional. Im BiSS-C-Modus (kontinuierlich) können am Sensorkopf ohne Unterbrechung der Sensordaten Konfigurationseinstellungen vorgenommen werden.

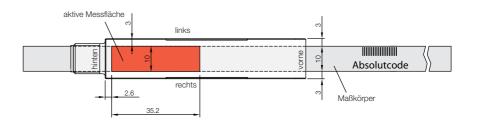
BiSS-C unterstützt CRC, Warn- und Fehlernachrichten.

Achtung!


Vor Konstruktion, Installation und Inbetriebnahme bitte die Hinweise der Betriebsanleitung beachten. www.balluff.de

Baureihe S1G, absolut


Magnetband-Maßkörper


Baureihe	Magnetband-Maßkörper
Ausgangssignal	für BML-S1G
Bestellcode	
Typenbezeichnung	BML-M02-A55-A3-M0100-E
Länge	z. B. 100 cm
Material Magnetband-Maßkörper	Gummiferrit, Träger Edelstahl
Material Abdeckband	Edelstahl

Bestellbeispiel: Magnetband-Maßkörper

Positionierung

nenete elenen

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1H

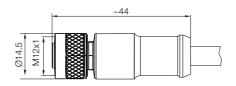
Baureihe S1G Allgemeine Daten

SSI-Schnittstelle, BiSS-C-Schnittstelle Magnetband-Maßkörper

Anschlusskabel Digital-Display, CAM-Controller

Baureihe S1F

Baureihe S2B/S2E/S1C


Zubehör

Grundlagen und Definitionen

Baureihe S1G, absolut **Anschlusskabel**

Zubehör		Anschlusskabel M12
		12-polig, Buchse gerade
Baureihe		BML-S1HS284
Länge 2 m	Bestellcode	BCC09MW
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-020-C009
Länge 5 m	Bestellcode	BCC09MY
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-050-C009
Länge 10 m	Bestellcode	BCC09MZ
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-100-C009
Länge 15 m	Bestellcode	BCC09N0
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-150-C009
Länge 20 m	Bestellcode	BCC09N1
	Typenbezeichnung	BCC M41C-0000-1A-169-PS0C08-200-C009
Material		PUR, mit Stecker, umspritzt, schwarz
Beschreibung/weitere Daten		■ Kabel: Ø 4,9 mm, 12×0,08 mm²
		■ Biegeradius:
		15×D (bewegt), 7,5×D (unbewegt)
		■ Temperaturbereich: -25 °C+70 °C

Baureihe S1G, absolut Digital-Display, CAM-Controller

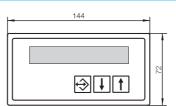
Magnetkodiertes Weg- und Winkel-messsystem

Baureihe S1H

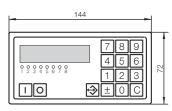
Baureihe S1G Allgemeine Daten

SSI-Schnittstelle, BiSS-C-Schnittstelle Magnetband-Maßkörper

Anschlusskabel Digital-Display, CAM-Controller


Baureihe S1F

Baureihe S2B/S2E/S1C


Zubehör

Grundlagen und Definitionen

Baureihe	BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
	Digital-Display	CAM-Controller
	SSI-Schnittstelle	SSI-Schnittstelle
Bestellcode	BAE0069	BAE006F
Typenbezeichnung	BDD-AM 10-1-SSD	BDD-CC 08-1-SSD
Merkmale	■ 7 1/2-stellige Anzeige mit Vorzeichen	■ 8 Ausgänge programmierbar
	■ LED-Anzeige 14 mm hohe, rote	■ 8 richtungsabhängige Schaltpunkte
	7-Segment-Ziffern	möglich
	■ Messwerte skalierbar	■ LED-Anzeige 14 mm hohe rote
	■ Anzahl der Kommastellen einstellbar	7-Segment-Ziffern, 6-stellig
	■ Nullpunkt einstellbar	■ Schaltpunkte kontrollierbar über LEDs auf
	■ Betriebsspannung 1032 V	der Frontplatte
	■ 2 programmierbare Relais-Ausgänge,	■ 300 Schaltpunkte auf bis zu
	jeweils als Endschalter/Komparator	15 Programme aufteilbar
	■ Nocke	OT- bzw. Nullpunktverschiebung
	■ 2-Punkt-Regler	einstellbar
	■ 1 konfigurierbarer Eingang	dynamische Totzeitkompensation separat
	■ externes Nullsetzen	für jeden Schaltpunkt
	■ Festhalten des Anzeigewerts	zur Parallelschaltung mehrerer
	■ integrierte Geberversorgung	BDD-CC 08
	300 mA, 5 V oder 24 V	■ integrierte Geberversorgung
	■ isoliertes DIN-Gehäuse zum Einbau in	300 mA, 5 V oder 24 V
	Frontplatte (Spannbügel im Lieferumfang	■ isoliertes DIN-Gehäuse zum Einbau in
	enthalten)	Frontplatte (Spannbügel im Lieferumfang
		enthalten)

Gehäusetiefe 110 mm

Gehäusetiefe 110 mm

BALLUFF | 37 www.balluff.com

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1F, inkrementell

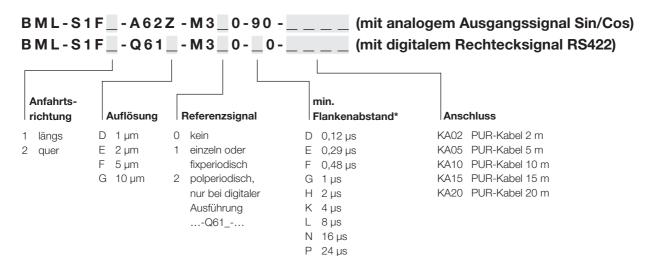
Das magnetkodierte Weg- und Winkelmesssystem BML bietet mit den Sensorköpfen S1F hochauflösende Ausführungen in robusten Metallgehäusen an. Sie erfassen auch Referenzpunkte auf dem Maßkörper. Die Serie S1F kann wahlweise längs oder quer eingesetzt werden.

Ein äußerst kompaktes Design zeichnet die Serie S1F aus und ermöglicht dadurch die Integration auch unter beengten Einbauverhältnissen.

Baureihe S1F, inkrementell Inhalt

S1F, inkrementell, 1 mm Polteilung

Allgemeine Daten
Technische Auswahlhilfe
Magnetband-Maßkörper
Magnetringe



Merkmale

- 1 µm Auflösung (digital)
- ±10 µm Systemgenauigkeit erlaubt hohe Verstärkungsfaktoren
- hohe Wiederholgenauigkeit ±1 Inkrement
- Referenzsignal
- kleinste Bauform
- robustes Metallgehäuse
- längs oder quer zum Maßkörper montierbar
- Polteilung 1 mm

Bestellbeispiel: Sensorkopf, Polbreite 1 mm

Sensorstecker (z. B. SUB-D) sind auf Anfrage lieferbar. Bessere Auflösung und Genauigkeit sind auf Anfrage lieferbar. * Auswahlhilfe siehe Seite 42:

Auflösung – Geschwindigkeit (Drehzahl) – Flankenabstand

Vorzugstypen

■ BML-S1F1-A62Z-M310-90-KA05 (BML02J1):

Einbau längs zum Maßkörper, Analogausgang Sin/Cos, mit Referenzsignal, 5 m Kabel

■ BML-S1F1-Q61D-M310-F0-KA05 (BML001A):

Einbau längs zum Maßkörper, Digitalsignal RS422, mit Referenzsignal, 5 m Kabel, Auflösung 1 μ m, Flankenabstand 0,48 μ s, Verfahrgeschwindigkeit bis 1 m/s

kompakt und hochauflösend

Baureihe S1F, inkrementell **Allgemeine Daten**

Baureihe	BML-S1FQ	BML-S1FA
Ausgangssignal	digitale Rechtecksignale RS422	sinusförmige Analogsignale Sin/Cos
	A, /A, B, /B, Z, /Z	A, /A, B, /B, Z, /Z
Auflösung	1 μm, 2 μm, 5 μm oder 10 μm	von Auswertung abhängig, bis 0,25 µm
Polteilung Signalperiode	1 mm	1 mm
Typenbezeichnung	BML-S1FQ61M3_ 00	BML-S1FA62Z-M3_ 0-90
Ausgangsspannung (A/B/Z)	RS422 nach DIN 66259	1 V _{ss}
Gesamtsystemgenauigkeit	±10 μm	±10 µm
Betriebsspannung	5 V ±5 %	5 V ±5 %
Stromaufnahme bei 5 V Betriebsspannung	< 50 mA + Stromaufnahme der Steuerung	< 50 mA + Stromaufnahme der Steuerung
	(je nach Innenwiderstand)	(je nach Innenwiderstand)
Leseabstand Sensor/Band max.	0,35 mm	0,35 mm
Verfahrgeschwindigkeit max.	20 m/s	20 m/s
Betriebstemperatur	-20+80 °C	−20+80 °C
Gehäusematerial	Al	Al
Schutzart	IP 67	IP 67

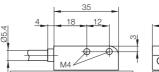
Weg- und Winkelmesssystem

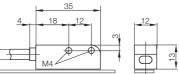
Baureihe S1H

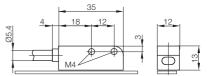
Baureihe S1G

Baureihe S1F

Allgemeine Daten Technische Auswahlhilfe

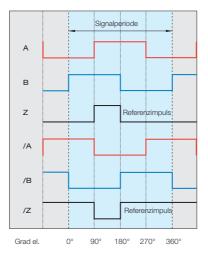

Magnetband-Maßkörper Magnetringe

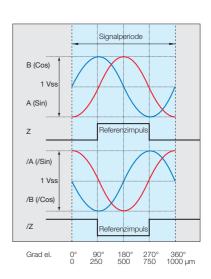

Baureihe S2B/S2E/S1C


Zubehör

Grundlagen und

Alle Daten gelten in Verbindung mit Maßkörper BML-...-I34... (siehe Seite 44).




Digitale Rechtecksignale RS422

- Rechtecksignale RS422 nach DIN 66259
- Richtungsinformation = 90° phasenverschoben
- Auflösung = Flankenabstand A/B
- Differenzsignale
- Referenzimpuls (optional)
- Abschlusswiderstand ≥ 120 Ohm (üblicherweise in der Auswerteeinheit integriert)
- Vorwärtsbewegung: A vor B

Sinusförmige Analogsignale 1 V_{ss}

- Sinusförmige Spannungssignale
- Richtungsinformation = 90° phasenverschoben
- Signalperiode = 1000 µm
- Differenzsignale
- Referenzimpuls (optional)
- Abschlusswiderstand ≥ 120 Ohm (üblicherweise in der Auswerteeinheit integriert)
- Vorwärtsbewegung: A vor B

Achtung! Vor Konstruktion, Installation und Inbetriebnahme bitte die Hinweise der Betriebsanleitung beachten. www.balluff.de

www.balluff.com **BALLUFF**

Technische Auswahlhilfe

Das Wegmesssystem BML ist auf die jeweilige Anwendung genau abzustimmen. Nutzen Sie die technische Auswahlhilfe. Weitere Beispiele siehe Grundlagen und Definitionen, ab Seite 68.

Kompatibilität der Zählfrequenz von Steuerung und BML

Jeder Sensor mit einem digitalen Ausgangssignal hat einen charakteristischen minimalen Flankenabstand. Dieser muss von der übergeordneten Steuerung sicher erkannt werden. Daher empfehlen wir Steuerungen mit einer Zählfrequenz, die höher ist als die theoretisch errechnete Zählfrequenz.

Maximale Verfahrgeschwindigkeit, Auflösung und Flankenabstand

Zwischen der gewählten Auflösung des Sensorkopfes, dem minimalen Flankenabstand und der möglichen Verfahrgeschwindigkeit besteht ein Zusammenhang, der in folgender Tabelle dargestellt ist:

Fla	nkenabstand min.	Zählfrequenz	V _{max} entsprechend Flankenabstand und Auflösung mechanische Auflösung			
		(Signalperiode)	D 1 µm	E 2 µm	F 5 µm	G 10 µm
D	0,12 µs	2083,33 kHz	5 m/s	10 m/s	20 m/s	20 m/s
E	0,29 µs	862,07 kHz	2 m/s	4 m/s	10 m/s	10 m/s
F	0,48 µs	520,83 kHz	1 m/s	2 m/s	5,41 m/s	5,41 m/s
G	1 µs	250,00 kHz	0,65 m/s	1,3 m/s	2,95 m/s	2,95 m/s
Н	2 µs	125,00 kHz	0,3 m/s	0,6 m/s	1,54 m/s	1,54 m/s
K	4 µs	62,50 kHz	0,15 m/s	0,3 m/s	0,79 m/s	0,79 m/s
L	8 µs	31,25 kHz	0,075 m/s	0,15 m/s	0,34 m/s	0,34 m/s
N	16 µs	15,63 kHz	0,039 m/s	0,079 m/s	0,19 m/s	0,19 m/s
Р	24 µs	10,42 kHz	0,026 m/s	0,052 m/s	0,13 m/s	0,13 m/s

Tabelle 1: Auswahlhilfe für maximale Verfahrgeschwindigkeit der Baureihe S1F

Technische Auswahlhilfe

Rotative Anwendungen

Das Wegmesssystem BML ermöglicht die Erfassung von rotativen Bewegungen. Die rotativen Maßkörper können auf die jeweilige Anwendung abgestimmt werden. Nutzen Sie die terchnische Auswahlhilfe für rotative Systeme

Bestimmung der Impulse pro Umdrehung

Je nach Anwendung ist die Anzahl der benötigten Impulse pro Umdrehung unterschiedlich. Sie bestimmt die Auflösung des Sensorkopfes und den Magnetringdurchmesser.

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1H

Baureihe S1G

Baureihe S1F Allgemeine

Technische Auswahlhilfe

Magnetband-Maßkörper Magnetringe

Baureihe S2B/S2E/S1C

Zubehör

Grundlagen und Definitionen

Auflösung Sensorkopf Impulse/U bei 4-fach-Auswertung Ø Magnetring außen 72 mm 75 mm 122 mm **Bestellcode** BML002K BML01KM **BML01EW** $D = 1 \mu m$ 228000 238000 384000 $\mathbf{E} = 2 \, \mu \mathbf{m}$ 114000 119000 192000 $\mathbf{F} = 5 \, \mu \text{m}$ 45600 76800 47600 $G = 10 \, \mu m$ 22800 23800 38400

Tabelle 2: Auswahlhilfe Magnetringe für die Baureihe S1F

Maximale Drehzahl

Die Drehzahl und der Magnetringdurchmesser bestimmen die Geschwindigkeit des Ringes am Sensorkopf.

Die maximale Verfahrgeschwindigkeit, die der Sensor noch erkennen kann, ist von der Auflösung und dem Flankenabstand des Sensorkopfes abhängig. Auflösung und Flankenabstand können ausgewählt werden. Daraus ergibt sich eine maximale Drehzahl nach folgender Formel:

 $\label{eq:max.prehzahl} \text{Max. Drehzahl (min^-1)} = \frac{60 \times \text{max. Verfahrgeschwindigkeit (m/s)}}{\pi \times \text{Magnetringdurchmesser (m)}}$

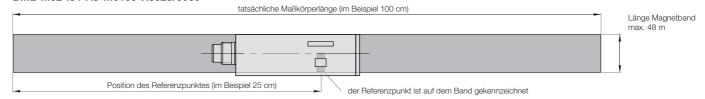
Die maximale Verfahrgeschwindigkeit finden Sie in der Tabelle 1. Wir empfehlen, die maximale Drehzahl der Anwendung 10 % unter diesem Wert anzusetzen.

Beispiel:

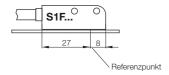
Sie verwenden einen Sensor BML-S1F mit der Auflösung 5 μ m (F) und einem minimalen Flankenabstand von 1 μ s (G). Für diesen Sensor ergibt sich aus Tabelle 1 eine maximale Verfahrgeschwindigkeit von 2,95 m/s.

Bei einem Magnetringdurchmesser von 72 mm = 0,072 m kann nach der Formel eine Drehzahl von 783 U/min erreicht werden. Eine maximale Drehzahl von 705 U/min sollte nicht überschritten werden.

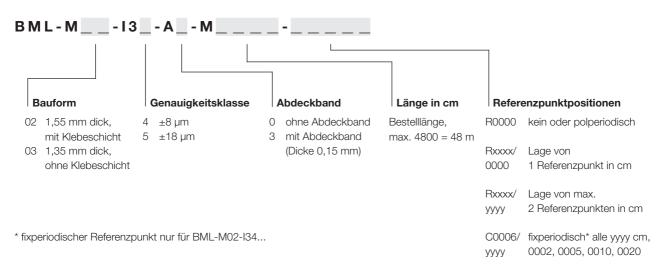
Nachschlagetabelle max. RPM siehe Tabelle 2, Seite 77.


Zubehör finden Sie ab **Seite 62.**

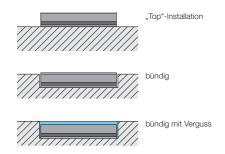
43

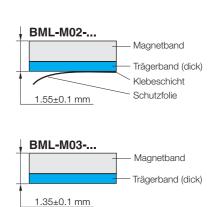

■ www.balluff.com BALLUFF

Magnetband-Maßkörper


Position des Einzel-Referenzpunktes am Bestellbeispiel BML-M02-I34-A3-M0100-R0025/0000

Typische Position der Referenzpunkte im Sensorkopf


Bestellbeispiel: Magnetband-Maßkörper konfektioniert, Polbreite 1 mm



Bestellbeispiel: Magnetband-Maßkörper von der Rolle, Polbreite 1 mm

Montagemöglichkeiten Magnetband-Maßkörper

Baureihe S1F, inkrementell Magnetringe

BML-M31-I30-A0-M075/060-R0

Elastomer auf Stahlring mit

Sensorfamilie F

BML01KM

Passung H7

238

1 mm

nein

BML-M30-I30-A0-M122/090-R0

Elastomer auf Stahlring mit

BML01EW

Passung H7

384

1 mm

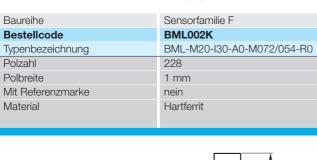
nein

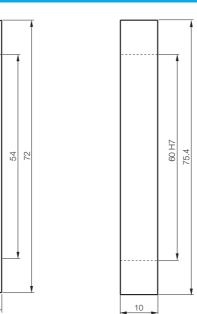
Mamama allaman
Magnetkodiertes
Weg- und Winkel-
weg- und willker-

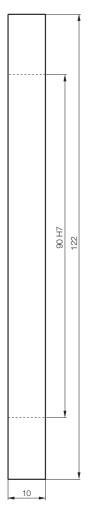
Baureihe S1H

Baureihe S1G

Baureihe S1F Allgemeine Daten


Technische Auswahlhilfe


Magnetband-Maßkörper Magnetringe


Baureihe S2B/S2E/S1C

Zubehör

Grundlagen und Definitionen

■ www.balluff.com BALLUFF | 45

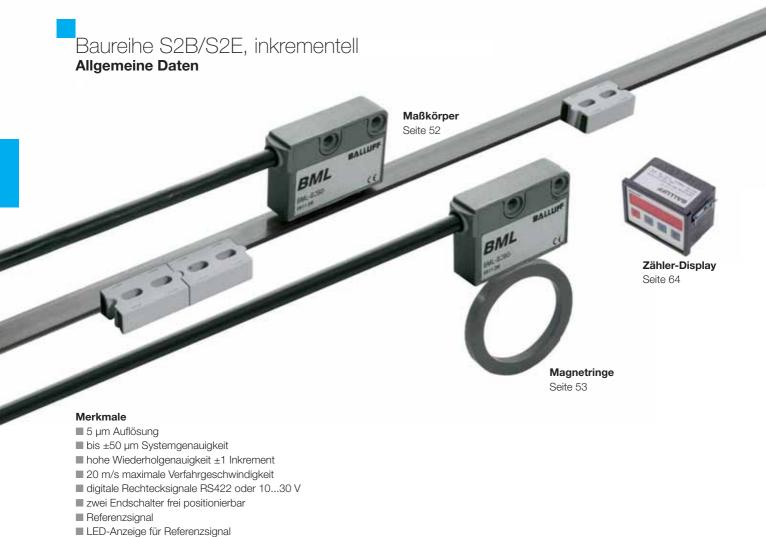
Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S2B/S2E/S1C, inkrementell

Das magnetkodierte Weg- und Winkelmesssystem BML bietet mit den Sensorköpfen S2B/S2E/S1C drei Systeme zur optimalen Anpassung an Ihre Messaufgabe.

Je nach Applikation können Auflösung und Genauigkeit passend ausgewählt werden. Eine Integration von Referenzpunkten ist ebenfalls möglich.

Alle drei Systeme zeichnen sich durch das kompakte Design aus, das serientübergreifend gleiche Abmessungen hat und damit die flexible Integration erlaubt.


BALLUFF
BML0211
BML51co.gssl.mago.me.rkabs

Baureihe S2B/S2E/S1C, inkrementell Inhalt

S2B/S2E, inkrementell, 5 mm Polte	ilung
Allgemeine Daten	48
Technische Auswahlhilfe	5
Magnetband-Maßkörper	52
Magnetringe	50
S1C/BMF 12M, inkrementell, 5 mm	Polteilung
Allgemeine Daten	56
Technische Auswahlhilfe	58
Magnetband-Maßkörper	59
Magnetringe	6
	60
	00

Bestellbeispiel: Sensorkopf, Polbreite 5 mm

■ Polbreite 5 mm

Sensorstecker (z. B. SUB-D oder M12-Stecker) sind auf Anfrage lieferbar.

* Auswahlhilfe Seite 50:

Auflösung - Geschwindigkeit (Drehzahl) - Flankenabstand

Vorzugstypen

■ BML-S2B0-Q53F-M410-D0-KA05 (BML0211)

Digitalsignal, 10..30 V, mit Referenzsignal, 5 m Kabel, Auflösung 5 µm, Flankenabstand 0,12 µs, Verfahrgeschwindigkeit bis 20 m/s

■ BML-S2E0-Q53G-M410-P0-KA05 (BML00JC)

Digitalsignal, 10..30 V, mit Referenzsignal, 5 m Kabel, Auflösung 10 µm, Flankenabstand 24 µs, Verfahrgeschwindigkeit bis 26 cm/s

■ BML-S2E0-Q61F-M410-G0-KA05 (BML001E)

Digitalsignal, 5 V, mit Referenzsignal, 5 m Kabel, Auflösung 5 μ m, Flankenabstand 1 μ s, Verfahrgeschwindigkeit bis 3,25 m/s

Baureihe S2B/S2E, inkrementell

Allgemeine Daten

digitale Rechtecksignale

RS422 nach DIN 66259

BML-S2E0-Q

5 μm, 10 μm, 25 μm oder 50 μm

A, /A, B, /B, Z, /Z (RS422) oder A, B, Z (HTL)

-M4

oder wie Betriebsspannung 10...30 V

		À	6		
N	SNS	s	s	SNS	N

Magnetkodiertes Weg- und Winkelmesssystem

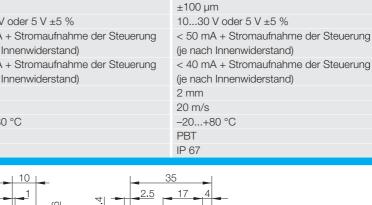
Baureihe S1H

Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E

Allgemeine

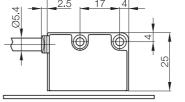

Technische Auswahlhilfe Magnetband-Magnetringe

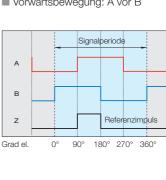
Baureihe S1C Allgemeine Technische Auswahlhilfe Magnetband-Maßkörper

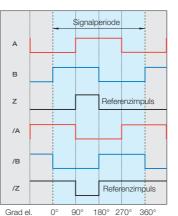
Magnetringe Zubehör

Grundlagen und Definitionen

Baureihe BML-S2B0-... Ausgangssignal digitale Rechtecksignale A, /A, B, /B, Z, /Z (RS422) oder A, B, Z (HTL) Auflösung 5 μm, 10 μm, 25 μm oder 50 μm Polteilung, Signalperiode Typenbezeichnung BML-S2B0-Q -M4 Ausgangsspannung (A/B/Z) RS422 nach DIN 66259 oder wie Betriebsspannung 10...30 V Gesamtsystemgenauigkeit 10...30 V oder 5 V ±5 % Betriebsspannung Stromaufnahme bei < 50 mA + Stromaufnahme der Steuerung 5 V Betriebsspannung (je nach Innenwiderstand) Stromaufnahme bei < 40 mA + Stromaufnahme der Steuerung 10...30 V Betriebsspannung (je nach Innenwiderstand) Leseabstand Sensor/Band max. 2 mm Verfahrgeschwindigkeit max. 20 m/s -20...+80 °C Betriebstemperatur Gehäusematerial PBT IP 67 Schutzart




Alle Daten gelten in Verbindung mit Maßkörper BML-...-I45-... (BML-S2B0...) bzw. BML-...-I46-... (BML-S2E0...)


bei 1 mm Leseabstand (siehe Seite 52).

Digitale Rechtecksignale RS422

- Rechtecksignale RS422 nach DIN 66259
- Richtungsinformation = 90° phasenverschoben
- Auflösung = Flankenabstand A/B
- Differenzsionale
- Referenzimpuls (optional)
- Abschlusswiderstand ≥ 120 Ohm (üblicherweise in der Auswerteeinheit integriert))
- Vorwärtsbewegung: A vor B

Digitale Rechtecksignale HTL

- Rechtecksignale HTL = Pegel wie Betriebsspannung
- Richtungsinformation = 90° phasenverschoben
- Auflösung = Flankenabstand A/B
- Referenzimpuls (optional)
- Abschlusswiderstand > 5 kOhm (üblicherweise in der Auswerteeinheit integriert)
- Vorwärtsbewegung: A vor B

Achtung!

www.balluff.com

Vor Konstruktion, Installation und Inbetriebnahme bitte die Hinweise der Betriebsanleitung beachten. www.balluff.de

Baureihe S2B/S2E, inkrementell

Technische Auswahlhilfe

Das Wegmesssystem BML ist auf die jeweilige Anwendung genau abzustimmen. Nutzen Sie die technische Auswahlhilfe. Weitere Beispiele siehe Grundlagen und Definitionen, ab Seite 68

Kompatibilität der Zählfrequenz von Steuerung und BML

Jeder Sensor mit einem digitalen Ausgangssignal hat einen charakteristischen minimalen Flankenabstand. Dieser muss von der übergeordneten Steuerung sicher erkannt werden. Daher empfehlen wir Steuerungen mit einer Zählfrequenz, die höher ist als die theoretisch errechnete Zählfrequenz.

Maximale Verfahrgeschwindigkeit, Auflösung und Flankenabstand

Zwischen der gewählten Auflösung des Sensorkopfes, dem minimalen Flankenabstand und der möglichen Verfahrgeschwindigkeit besteht ein Zusammenhang, der in folgenden Tabellen dargestellt ist:

Flar	nkenabstand min.	Zählfrequenz (Signalperiode)	V _{max} entsprechend Flankenabstand und Auflösung mechanische Auflösung			
		(Signalperiode)	F 5 µm	G 10 µm	H 25 µm	K 50 µm
D	0,12 μs	2083,33 kHz	20 m/s	20 m/s	20 m/s	20 m/s
E	0,29 µs	862,07 kHz	10 m/s	20 m/s	20 m/s	20 m/s
F	0,48 µs	520,83 kHz	5 m/s	10 m/s	20 m/s	20 m/s
G	1 µs	250,00 kHz	3,25 m/s	6,5 m/s	14,75 m/s	14,75 m/s
Н	2 µs	125,00 kHz	1,5 m/s	3 m/s	7,7 m/s	7,7 m/s
K	4 µs	62,50 kHz	0,75 m/s	1,5 m/s	3,95 m/s	3,95 m/s
L	8 µs	31,25 kHz	0,375 m/s	0,75 m/s	1,7 m/s	1,7 m/s
N	16 µs	15,63 kHz	0,195 m/s	0,395 m/s	0,95 m/s	0,95 m/s
Р	24 µs	10,42 kHz	0,13 m/s	0,26 m/s	0,65 m/s	0,65 m/s

Tabelle 1: Auswahlhilfe für maximale Verfahrgeschwindigkeit der Baureihe S2B/S2E

Technische Auswahlhilfe

Rotative Anwendungen

Das Wegmesssystem BML ermöglicht die Erfassung von rotativen Bewegungen. Die rotativen Maßkörper können auf die jeweilige Anwendung abgestimmt werden. Nutzen Sie die terchnische Auswahlhilfe für rotative Systeme

Bestimmung der Impulse pro Umdrehung

Je nach Anwendung ist die Anzahl der benötigten Impulse pro Umdrehung unterschiedlich. Sie bestimmt die Auflösung des Sensorkopfes und den Magnetringdurchmesser.

Baureihe S1H

Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E

Allgemeine

Technische Auswahlhilfe

Magnetband-Magnetringe

Baureihe S1C Allgemeine Technische Auswahlhilfe Magnetband-Maßkörper

Zubehör

Magnetringe

Grundlagen und Definitionen

Auflösung Sensorkopf	Impulse/U bei 4-fac	Impulse/U bei 4-fach-Auswertung		
	Ø Magnetring außer	Ø Magnetring außen		
	31 mm	31 mm 49 mm 72 mm		
Bestellcode	BML002T	BML002R	BML002P	
	BML002L	BML002M	BML002N	
$\mathbf{F} = 5 \mu \mathbf{m}$	20000	32000	46000	
$G = 10 \mu m$	10000	16000	23000	
$\mathbf{H} = 25 \mu \text{m}$	4000	6400	9200	
$K = 50 \mu m$	2000	3200	4600	

Tabelle 2: Auswahlhilfe Magnetringe für Baureihe S2B/S2E

Maximale Drehzahl

Die Drehzahl und der Magnetringdurchmesser bestimmen die Geschwindigkeit des Ringes am Sensorkopf.

Die maximale Verfahrgeschwindigkeit, die der Sensor noch erkennen kann, ist von der Auflösung und dem Flankenabstand des Sensorkopfes abhängig. Auflösung und Flankenabstand können ausgewählt werden. Daraus ergibt sich eine maximale Drehzahl nach folgender Formel:

60 × max. Verfahrgeschwindigkeit (m/s) Max. Drehzahl (min-1) =

 $\pi \times Magnetringdurchmesser (m)$

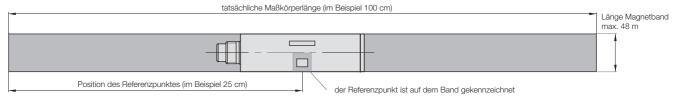
Nachschlagetabelle max. RPM siehe Tabelle 2, Seite 77.

Die maximale Verfahrgeschwindigkeit finden Sie in der Tabelle 1. Wir empfehlen, die maximale Drehzahl der Anwendung 10 % unter diesem Wert anzusetzen.

Beispiel:

Sie verwenden einen Sensor BML-S2B mit der Auflösung 5 µm (F) und einem minimalen Flankenabstand von 1 µs (G). Für diesen Sensor ergibt sich aus Tabelle 1 eine maximale Verfahrgeschwindigkeit von 3,25 m/s.

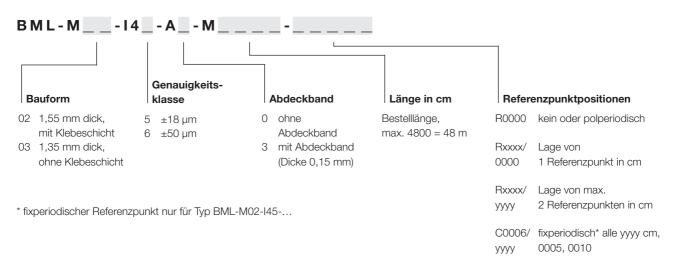
Bei einem Magnetringdurchmesser von 48 mm = 0,048 m kann nach der Formel eine Drehzahl von 1293 U/min erreicht werden. Eine maximale Drehzahl von 1164 U/min sollte nicht überschritten werden.

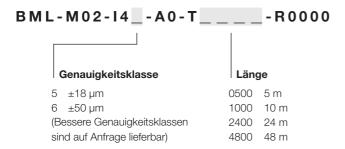

Zubehör finden Sie ab **Seite 62.**

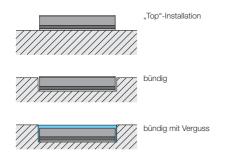
www.balluff.com **BALLUFF**

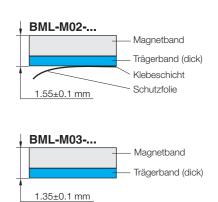
Baureihe S2B/S2E, inkrementell

Magnetband-Maßkörper


Position des Einzel-Referenzpunktes am Bestellbeispiel BML-M02-I45-A0-M0100-R0025/0000


Typische Position der Referenzpunkte im Sensorkopf


Bestellbeispiel: Magnetband-Maßkörper konfektioniert, Polbreite 5 mm



Bestellbeispiel: Magnetband-Maßkörper von der Rolle, Polbreite 5 mm

Montagemöglichkeiten Magnetband-Maßkörper

Baureihe S2B/S2E, inkrementell

Magnetringe

NSNSI SI SI SNSN
Magnetkodiertes

messsystem

Baureihe S1H
Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E Allgemeine

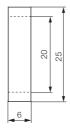
Technische

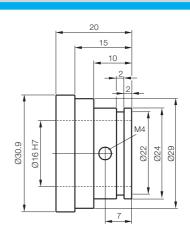
Auswahlhilfe Magnetband-Maßkörper

Magnetringe

Baureihe S1C

Allgemeine
Daten


Technische
Auswahlhilfe


Magnetband-Maßkörper

Magnetringe Zubehör

Grundlagen und Definitionen

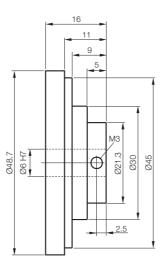
Sonderlösungen für viele Einsatzfälle

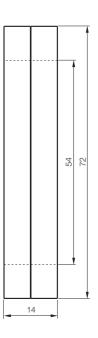
Magnetringe können in jeder Anwendung eingesetzt werden, in der rotative Bewegungen überwacht werden müssen. Wegen der hohen Auflösung können Gleichlaufüberwachungen ebenso realisiert werden wie exakte Winkelpositionierungen.

Balluff bietet serienmäßig rotative Maßkörper an, die für die meisten Einsatzzwecke gut geeignet sind. Auf Grund vieler unterschiedlicher Maschinenapplikationen erhalten Sie auf Anfrage Sondermaße und spezielle Magnetisierungen.

Auch lineare Maßkörper sind für rotative Anwendungen erfolgreich einzusetzen. So kann das Magnetband beispielsweise einfach auf den Schaft einer Solaranlage aufgeklebt werden, um die optimale Ausrichtung der Panels zu überwachen. Hilfreich ist hierbei eine vereinfachte Montage durch vorgefertigte Magnetbänder mit Löchern, die Balluff ebenfalls anbietet.

■ www.balluff.com BALLUFF | 53


Baureihe S2B/S2E, inkrementell Magnetringe



Baureihe	Sensorfamilie B/E	Sensorfamilie B/E	
Bestellcode	BML002R	BML002P	
Typenbezeichnung	BML-M21-I40-A0-M048/006-R0	BML-M20-I40-A0-M072/054-R1	
Polzahl	32	46	
Polbreite	5 mm	5 mm	
Mit Referenzmarke	Nein	Ja	
Material	Hartferrit/Aluminium	Hartferrit	

Baureihe S2B/S2E, inkrementell

Magnetringe

BML-M20-I40-A0-M072/054-R0

BML002N

46

5 mm

Nein

Hartferrit

NSNSI SI SI SNSNSN
Magnetkodiertes

Weg- und Winkel-messsystem

Baureihe S1H

Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E

Allgemeine Daten

Technische Auswahlhilfe Magnetband-Maßkörper

Magnetringe

Baureihe S1C Allgemeine Daten Technische Auswahlhilfe Magnetband-Maßkörper Magnetringe

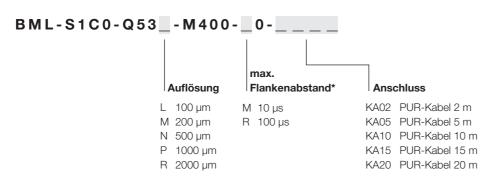
Zubehör

Grundlagen und Definitionen

Sensorfamilie B/E	Sensorfamilie B/E
BML002L	BML002M
BML-M20-I40-A0-M031/021-R0	BML-M20-I40-A0-M048/037-R
20	32
5 mm	5 mm
Nein	Nein
Hartferrit	Hartferrit

Allgemeine Daten

preisgünstig



Zähler-Display

Merkmale

- 0,1 mm Auflösung
- hohe Wiederholgenauigkeit ±1 Inkrement
- 10 m/s maximale Verfahrgeschwindigkeit
- Abstand zwischen Sensor und Maßkörper bis 2 mm
- digitale Rechtecksignale Ausgangsspannung 10...30 V (HTL)
- Kabelanschluss
- 10...30 V DC Versorgungsspannung
- Polbreite 5 mm

Bestellbeispiel: Sensorkopf, Polbreite 5 mm

Sensorstecker (z. B. SUB-D oder M12-Stecker) sind auf Anfrage lieferbar.

* Auswahlhilfe siehe Seite 58:

Auflösung - Geschwindigkeit (Drehzahl) - Flankenabstand

Vorzugstyp

■ BML-S1C0-Q53L-M400-M0-KA05 (BML003U)

Digitalsignal, 10...30 V, 5 m Kabel, Auflösung 0,1 mm, Flankenabstand 10 µs, Verfahrgeschwindigkeit bis 8 m/s

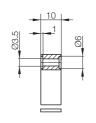
Allgemeine Daten

NF 12M
P-/NPN-Schließer

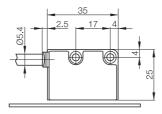
Baureihe	BML-S1C0	BMF 12M
Ausgangssignal	digitale Rechtecksignale	PNP-/NPN-Schließer
		1 Schaltvorgang pro Pol
Auflösung	0,1 mm, 0,2 mm, 0,5 mm, 1 mm, 2 mm	
Polteilung, Signalperiode	5 mm	5 mm
Bestellcode		BMF0022
Typenbezeichnung	BML-S1C0-Q53M4000-KA	BMF 12M-PS-D-2-S4 (PNP Schließer)
Bestellcode		BMF0021
Typenbezeichnung		BMF 12M-NS-D-2-S4 (NPN Schließer)
Ausgangsspannung (A/B)	wie Betriebsspannung 1030 V	Betriebsspannung –U _d
Gesamtsystemgenauigkeit	±100 μm	> ±5 mm
Betriebsspannung	1030 V	1030 V DC
Spannungsfall U _d		≤ 3,15 V
Stromaufnahme bei	< 40 mA + Stromaufnahme der Steuerung	200 mA
1030 V Betriebsspannung	(je nach Innenwiderstand)	
Leseabstand Sensor/Band max.	2 mm	2 mm
Verfahrgeschwindigkeit max.	10 m/s	7 kHz
Betriebstemperatur	−20+80 °C	−25+85 °C
Gehäusematerial	PBT	Messing beschichtet
Schutzart	IP 67	IP 67

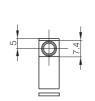
Magnetband-Maßkörper Magnetringe Zubehör

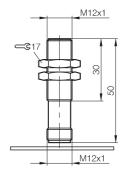
Magnetkodiertes Weg- und Winkel-messsystem


Baureihe S1H Baureihe S1G

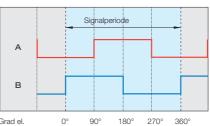
Baureihe S1F


Baureihe S2B/S2E Allgemeine Daten Technische Auswahlhilfe Magnetband-Maßkörper Magnetringe Baureihe S1C Allgemeine Daten Technische Auswahlhilfe


Grundlagen und Definitionen


Alle Daten gelten in Verbindung mit Maßkörper BML-...-I46-... bei 1 mm Leseabstand (siehe Seite 59).

www.balluff.com



Digitale Rechtecksignale HTL

- Rechtecksignale HTL = Pegel wie Betriebsspannung
- Richtungsinformation = 90° phasenverschoben
- Auflösung = Flankenabstand A/B
- Abschlusswiderstand ≥ 120 Ohm (in der Auswerteeinheit integriert)

Grad el.

Technische Auswahlhilfe

Das Wegmesssystem BML ist auf die jeweilige Anwendung genau abzustimmen. Nutzen Sie die technische Auswahlhilfe. Weitere Beispiele siehe Grundlagen und Definitionen, ab Seite 68

Kompatibilität der Zählfrequenz von Steuerung und BML

Jeder Sensor mit einem digitalen Ausgangssignal hat einen charakteristischen minimalen Flankenabstand. Dieser muss von der übergeordneten Steuerung sicher erkannt werden. Daher empfehlen wir Steuerungen mit einer Zählfrequenz, die höher ist als die theoretisch errechnete Zählfrequenz.

Maximale Verfahrgeschwindigkeit, Auflösung und Flankenabstand

Zwischen der gewählten Auflösung des Sensorkopfes, dem minimalen Flankenabstand und der möglichen Verfahrgeschwindigkeit besteht ein Zusammenhang, der in folgenden Tabellen dargestellt ist:

Flar	nkenabstand	Zählfrequenz (Signalperiode)	V _{max} entsprecher mechanische Auf L 100 um	nd Flankenabstand flösung M 200 um	l und Auflösung N 500 µm	P 1000 µm	R 2000 µm
М	10 µs	25,00 kHz	8 m/s	10 m/s	10 m/s	10 m/s	10 m/s
R	100 µs	2,50 kHz	0,9 m/s	1,8 m/s	4,2 m/s	8,8 m/s	10 m/s

Tabelle 1: Auswahlhilfe für maximale Verfahrgeschwindigkeit der Baureihe S1C

Rotative Anwendungen

Das Wegmesssystem BML ermöglicht die Erfassung von rotativen Bewegungen. Die rotativen Maßkörper können auf die jeweilige Anwendung abgestimmt werden. Nutzen Sie die terchnische Auswahlhilfe für rotative Systeme

Bestimmung der Impulse pro Umdrehung

Je nach Anwendung ist die Anzahl der benötigten Impulse pro Umdrehung unterschiedlich. Sie bestimmt die Auflösung des Sensorkopfes und den Magnetringdurchmesser.

Auflösung Sensorkopf		Impulse/U bei 4-fach-Auswertung			
	Ø Magnetring außen				
	31 mm	49 mm	72 mm		
Bestellcode	BML002T	BML002R	BML002N		
	BML002L	BML002M			
L = 100 µm	1000	1600	2300		
$M = 200 \mu m$	500	800	1150		
$N = 500 \mu m$	200	320	460		
P = 1000 μm	100	160	230		
$R = 2000 \mu m$	50	80	115		

Tabelle 2: Auswahlhilfe Magnetringe für Baureihe S1C

Maximale Drehzahl

Die Drehzahl und der Magnetringdurchmesser bestimmen die Geschwindigkeit des Ringes am Sensorkopf.

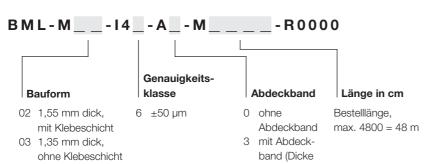
Die maximale Verfahrgeschwindigkeit, die der Sensor noch erkennen kann, ist von der Auflösung und dem Flankenabstand des Sensorkopfes abhängig. Auflösung und Flankenabstand können ausgewählt werden. Daraus ergibt sich eine maximale Drehzahl nach folgender Formel:

Max. Drehzahl (min⁻¹) =
$$\frac{60 \times \text{max. Verfahrgeschwindigkeit (m/s)}}{\pi \times \text{Magnetringdurchmesser (m)}}$$

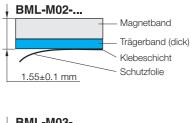
Die maximale Verfahrgeschwindigkeit finden Sie in der Tabelle 1. Wir empfehlen, die maximale Drehzahl der Anwendung 10 % unter diesem Wert anzusetzen.

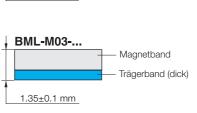
Nachschlagetabelle max. RPM siehe Tabelle 2, Seite 77.

Beispiel


Sie verwenden einen Sensor BML-S1C mit der Auflösung 100 μ m (L) und einem minimalen Flankenabstand von 10 μ s (M). Für diesen Sensor ergibt sich aus Tabelle 1 eine maximale Verfahrgeschwindigkeit von 8 m/s.

Bei einem Magnetringdurchmesser von 48 mm = 0,048 m kann nach der Formel eine Drehzahl von 3183 U/min erreicht werden. Eine maximale Drehzahl von 2865 U/min sollte nicht überschritten werden.


Magnetband-Maßkörper


Bestellbeispiel:

Magnetband-Maßkörper konfektioniert, Polbreite 5 mm

0,15 mm)

Weg- und Winkelmesssystem

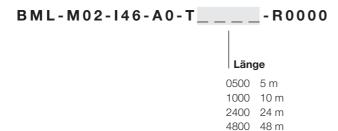
Baureihe S1H

Baureihe S1G

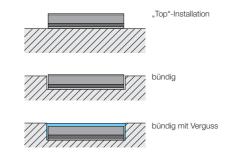
Baureihe S1F

Baureihe S2B/S2E Allgemeine Technische Auswahlhilfe Magnetband-

Magnetringe Baureihe S1C

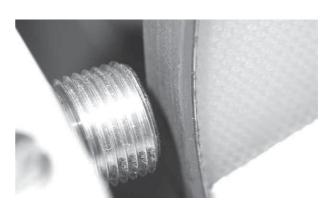

Allgemeine Daten Technische Auswahlhilfe Magnetband-Maßkörper Magnetringe

Zubehör


Grundlagen und Definitionen

Bestellbeispiel:

Magnetband-Maßkörper von der Rolle, Polbreite 5 mm


Montagemöglichkeiten Magnetband-Maßkörper (auch in magnetisierbares Material)

BMF 12M-PS-D-2-S4

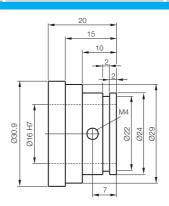
Geschwindigkeitskontrolle in rotativen Anwendungen: Einfach günstiger.

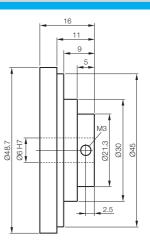
Mit den hier gezeigten Magnetringen und Magnetbändern, die für die Sensorfamilie B/C/E geeignet sind, ist eine Geschwindigkeitsbestimmung mit schaltenden magnetischen Sensoren der Serie BMF möglich. Der Sensor BMF 12M-PS-D-2-S4 ermöglicht mit seinem Standardgewinde M12 den Einbau in vielen Applikationen. Er kann in einem Abstand bis zu 2 mm zum Magnetkörper installiert werden. Am Schaltausgang steht ein Impulssignal an, das die Drehgeschwindigkeit widerspiegelt. Der Sensor kann bis zu 7 kHz erfassen – je nach ausgewähltem Maßkörper sind damit Drehzahlen bis ca. 20000 U/min möglich.

Zubehör finden Sie ab Seite 62.

www.balluff.com **BALLUFF**

Baureihe S1C, inkrementell Magnetringe





Baureihe	Sensorfamilie C	Sensorfamilie C	Sensorfamilie C	
Bestellcode	BML04E2	BML002T	BML002R	
Typenbezeichnung	BML-M33-I40-A0-M025/020-R0	BML-M22-I40-A0-M031/016-R0	BML-M21-I40-A0-M048/006-R0	
Polzahl	16	20	32	
Polbreite	5 mm	5 mm	5 mm	
Mit Referenzmarke	Nein	Nein	Nein	
Material	Kunststoff	Hartferrit/Aluminium	Hartferrit/Aluminium	

Magnetringe

NSNSIS SISNSN
Magnetkodiertes

Magnetkodiertes Weg- und Winkelmesssystem

Baureihe S1H

Baureihe S1G

Baureihe S1F

Baureihe

S2B/S2E

Allgemeine Daten Technische Auswahlhilfe

Magnetband-Maßkörper Magnetringe

Baureihe S1C Allgemeine Daten Technische Auswahlhilfe

Magnetband-Maßkörper **Magnetringe**

Zubehör

Grundlagen und Definitionen

Sensorfamilie C	Sensorfamilie C	Sensorfamilie C
BML002L	BML002M	BML002N
BML-M20-I40-A0-M031/021-R0	BML-M20-I40-A0-M048/037-R0	BML-M20-I40-A0-M072/054-R0
20	32	46
5 mm	5 mm	5 mm
Nein	Nein	Nein
Hartferrit	Hartferrit	Hartferrit

Sonderlösungen für viele Einsatzfälle

Magnetringe können in jeder Anwendung eingesetzt werden, in der rotative Bewegungen überwacht werden müssen. Wegen der hohen Auflösung können Gleichlaufüberwachungen ebenso realisiert werden wie exakte Winkelpositionierungen.

Balluff bietet serienmäßig rotative Maßkörper an, die für die meisten Einsatzzwecke gut geeignet sind. Auf Grund vieler unterschiedlicher Maschinenapplikationen erhalten Sie auf Anfrage Sondermaße und spezielle Magnetisierungen.

Auch lineare Maßkörper sind für rotative Anwendungen erfolgreich einzusetzen. So kann das Magnetband beispielsweise einfach auf den Schaft einer Solaranlage aufgeklebt werden, um die optimale Ausrichtung der Panels zu überwachen. Hilfreich ist hierbei eine vereinfachte Montage durch vorgefertigte Magnetbänder mit Löchern, die Balluff ebenfalls anbietet.

Wir bieten Sonderlösungen. Sprechen Sie uns an.

■ www.balluff.com

Magnetkodiertes Weg- und Winkelmesssystem

Zubehör

Zu allen Baureihen können Sie Zähler und Displays erhalten, um in Ihrer Anwendung die Sensorsysteme optimal einzubinden. Das Angebot an Sensorführungen bietet Ihnen die Möglichkeit, auch dort hochpräzise und robuste Messsysteme zu integrieren, wo keine optimale Führung vorhanden ist.

Zubehör S1F, S2B, S2E, S1C, inkrementell

Zähler-Display Sensorführung 64 66

■ www.balluff.com BALLUFF | 63

Zähler-Display

Magnetkodiertes Weg- und Winkelmesssystem BML: Drehzahlen messen und anzeigen

Drehzahlerkennung von Wellen und Spindeln sowie einfache Drehgeberaufgaben können mit der Kombination aus BML, BDD und den Magnetring-Maßkörpern optimal realisiert werden.

Baureihe	
Schnittstelle	
Bestellcode	
Typenbezeichnung	
Bestellcode	
Typenbezeichnung	
Bestellcode	
Typenbezeichnung	
Funktionen	
Merkmale	
Verwendung	
To the final light	

 Netzgerät zum Anschluss an 115 V/230 V, z. B. BAE0001 oder BAE00EN ab Seite 403.

Zähler-Display

für BML-S2B..., BML-S1C...

BDD 610-R3Q3-0-53-N-00 (2 dig. Ausgänge)

BDD 610-R3Q3-0-51-N-00 (2 dig. Eingänge)

Weg- und Winkel-

Baureihe S1H

Baureihe S1G

Baureihe S1F

Baureihe S2B/S2E

Baureihe S1C

Zubehör

Zähler-Display Sensorführung

Grundlagen und Definitionen

BDD 611/BDD 622/BDD 632 Einachs-, Zweiachs-, Dreiachszähler

für BML-S1F, BML-S2B, BML-S2E, BML-S1C

BAE004K

BDD 611-R3Q4-0-52-N-00 (1 Achse)

BAE004M

BDD 622-R3Q4-0-52-N-00 (2 Achsen)

BAE004P

BDD 632-R3Q4-0-52-N-00 (3 Achsen)

■ Setzwert

BDD 610

BAE004J

Einachszähler

und BML-S2E...

■ Istwertspeicher

■ Faktorberechnung

■ Zählrichtungsumkehr

■ bis 3-stelliger Dezimalpunkt

■ Tastenfunktionen festlegbar

Reset- und Setlogik

■ Logik der Ein-/Ausgänge

■ Sicherheitscode

Setzwert

■ Istwertspeicher

■ Faktorberechnung

■ Flankenauswertung

■ Zählrichtungsumkehr

■ bis 3-stelliger Dezimalpunkt

■ Tastenfunktionen festlegbar

Reset- und Setlogik

■ Absolut-/Kettenmaß

■ Versatzmaßlogik

■ Sägeblattkorrektur

Logik der Ein-/Ausgänge

■ Sicherheitscode

■ Referenzimpuls

■ Spannungsversorgung 24 V DC*

■ 1×6 dekadische LED-Anzeige

■ Ziffernhöhe 14 mm

Messsystem inkremental mit Spuren A, B

max. 25 kHz

■ 2 digitale Eingänge (-51-)

2 digitale Ausgänge (-53-)

für BML-S2B0..., BML-S2E0...

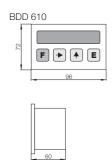
und BML-S1C0-...-Q53... min. Flankenabstand Code M, N, P, R ■ Spannungsversorgung 24 V DC*

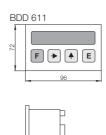
■ 1×6/2×6/3×6 dekadische LED-Anzeige

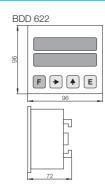
Messsystem inkremental mit Spuren A, /A, B, /B, Z, /Z oder A, B, Z

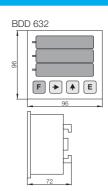
■ Ziffernhöhe 14 mm

■ 4 digitale Eingänge


■ 2 digitale Ausgänge


■ min. Flankenabstand bei 4-fach-Auswertung: 250 µs


■ BDD 611: max. Eingangsfrequenz: Signal A oder B: 1 MHz


für BML mit Betriebsspannung 5 V/10...30 V, Ausgangsspannung RS422/HTL,

min. Flankenabstand Code E, F, G, H, K, L, M, N, P, R

www.balluff.com **BALLUFF**

Sensorführung

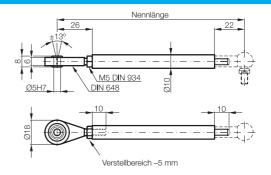
Schutz und Führung

Die Sensorführung besteht aus einer Aluminiumschiene für die Aufnahme des Magnetbandes und einem Schlitten mit Gleitern, der den Sensorkopf präzise führt. Die mechanische Ankopplung erfolgt über eine Standard-Gelenkstange.

Merkmale

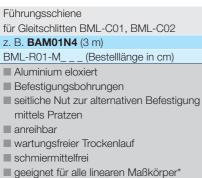
- individuelle Längen
- einfache Befestigung durch Direktschrauben oder Befestigungselemente
- anreihbare Schienen, zerlegbare Elemente
- Anschluss von Schleppketten (ist vorgesehen)
- flache Bauform, minimaler Platzbedarf
- geringe Kosten
- Gleiter sind schmiermittelfrei, daher keine Wartungskosten
- minimale Lagerhaltung, da durchgängiges Konzept auch für verschiedene Sensorköpfe
- einfache Installation des Magnetbandes durch Montagehilfe

Sensorführung	
Bestellcode	
Typenbezeichnung	
Merkmale	


Um den Maßkörper vor Beschädigung z.B. durch Späne oder Chemikalien zu schützen, kann dieser mit einem Abdeckband aus Edelstahl überklebt werden.

Beachten Sie, dass sich der zulässige Abstand zwischen Sensorkopf und Maßband um die Dicke des Abdeckbandes mit Klebefolie (0,15 mm) verringert.

- Abdeckband und Maßkörper können zusammen in passender Länge bestellt werden (siehe Maßkörper Seite 44, 52 oder 59).
- Abdeckband ist in 4 verschiedenen Längen erhältlich.



Zubehör	Gelenkstange		
	für BML-C01, BML-C02		
Bestellcode	z. B. BAM000P (100 mm)		
Typenbezeichnung	BTL2-GS10A		
Verwendung	zur Anbindung des Gleitschlittens an die		
	Maschine		

Sensorführung

Gleitschlitten
für Sensoren BML-S2B, BML-S2E, BML-S1C
BAM01MF
BML-C01
■ Aluminium
= 1 1 - 11 12 - 1 1 - O - 11

■ komplett montiert mit Gleitern ■ Anschluss für Gelenkstange ■ Anschluss für Schleppketten ■ wartungsfreier Trockenlauf ■ schmiermittelfrei

DALLO ARELL
für Sensoren BML-S1F
Gieitschlitten

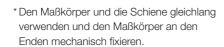
BAM01MH BML-C02

- Aluminium
- komplett montiert mit Gleitern
- Anschluss für Gelenkstange
- Anschluss für Schleppketten
- wartungsfreier Trockenlauf
- schmiermittelfrei

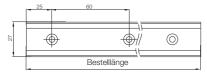
Weg- und Winkel-messsystem

Baureihe S1H

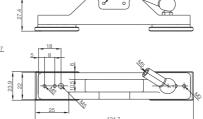
Baureihe S1G

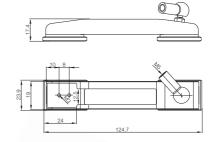

Baureihe S1F

Baureihe S2B/S2E


Baureihe S1C

Zubehör Zähler-Display Sensorführung

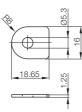

Grundlagen und Definitionen



Montage des Magnetbandes auf BML-R01

Montagehilfe

BAM01L9 BML-Z0010



Pratzen (2 Stück)	Abdeckban	d von der F	Rolle		
für BML-R01	für BML-MC)2, BML-M	03		
BAM01JL	z. B. BML0	01K (10 m))		
BML-Z0008	BML-A013-	T			
zur seitlichen Befestigung der Schiene und	0500	1000	2400	4800	Ī
an Übergangsstellen	5 m	10 m	24 m	48m	

www.balluff.com **BALLUFF**