AP40 Display Controller

Suitable for:

- Displaying position and velocity
- Signal conversion
- Cam control
- Under/over speed monitoring
- Process time indication (1/f)

For sensors with:

- SSI interface
- Incremental encodersignals
- Analog signals (current / voltage)
- Start/Stop signals

General

The AP40 is designed to display position and velocity, to be used as an electronic camshaft, to convert signals and has the abilities to solve complex and unusual applications. For this, the AP40 uses a sensor input that can handle various kinds of position signals. The position and velocity values can be adjusted through a set of parameters.

Main features:

- 8 digit display, digit height 10mm
- CAN bus, RS232, RS485 communication
- Analog input (optional)
- · Inputs and outputs optically isolated
- 24 (dynamic) cams

Programming

The AP40 can be programmed by using the front keys. Another possibility is to use the PC-program DST40. This software allows easy access to and overview of all parameters. The settings of the display controller can be stored on your harddrive. The communications with the AP40 are ASCII based RS232; it is possible to connect the AP40 to other PCsoftware.

Configuration Actual Counter Counter Frequency Makes	Menu	No.	Name	Value	Text
	2.2.1	214	SSI format		Gray
	2.2.2	211	Inverted direction	0	Not inverted
	2.2.3	216	Number of SSI clock impuls	0	
	2.2.4	217	Number of SSI databits	0	
CANbus AP-Link	2.2.5	000	Multiplier numerator	0	
Start/Stopp	2.2.6	001	Multiplicator denumerator	0	
B 🔄 CAN-Bus B 🔄 Serial B 🔄 Inputs	2.2.7	218	Adjustment	0	Inactive
	2.2.8	213	Reference course	0	Inactive
	2.2.9	209	direction reference fine	0	Up/Down
Outputs	2.2.10	002	Offset	0	
Analog input	2.2.11	005	Adjustment absolute value	0	
Config	2.2.12	006	Max. delta SSI per cycleti	0	
	2.2.13	220	Max. SSI errors	0	
	2.2.14	221	SSI guarding	0	Inactive
can					

Display for position and velocity

The sensor value is adjusted by the programmable parameters. The value can be converted to any desired unit, e.g. mm, meters or mm/sec. This value can be displayed on the 8 digit display of the AP40. Based on the actual display limit values or cams can be programmed.

Signal conversion

One of the unique possibilities of the AP40 is to convert the display value to a current or voltage. The range of the analog output is fully adjustable from -20..+20 mA or -10V..+10V. This feature makes it easy to convert for example the value of a SSI-encoder to an analog value.

Cam controller

It is possible to freely program a total of 24 cams. These cams can be assigned to 4 different outputs and can be compensated dynamically for dead-time. It is also possible to program the cams with a hysteresis.

The response time for the AP40 is no more than 250 microseconds (1 cycletime).

Other features

Many applications can be solved by using the display controller AP40. A few possibilities:

- Circumference measurement
- Process time indication
- Programmable counting range
- Cam generator
- Product length measurement

Overview communication

Sensors:

SSI input

Input for sensors with SSI. The number of clock pulses and number of databits can be programmed, as well as the code (Gray, binary).

Incremental input

Different types of signals can be connected to the input:

- 5 VTTL with marker pulse and inverted signals
- 5 VTTL without inverted signals
- 24 VHTL (A, B, N)
- S-signal: 24V blockpulse (1 channel) with a separate directional signal

Analog

The 16 bit analog input is freely programmable within the range of -20..+20mA or -10..+10V. This freedom offers the possibility to connect all regularly used signals: $0..\pm 20mA$, 4..20mA, 0..10V, $0..\pm 10V$ and so on.

Start/Stop

The start-stop input is used for the linear displacement sensors from MTS Sensor Technologie. These sensors are easily connected to the AP40.

CAN bus and AP-link

Multiple AP40 units can be connected to a CAN-bus. The AP-link protocol takes care of the communication between the units. This way the position and velocity data can be transmitted to other units.

RS232/RS485 communication

The ASCII-protocol is used to communicate with the AP40. The PC-software DST40 uses this protocol to enable easy programming with the PC.

Analog output

The optional analog output has a 16 bit D/A convertor. Both current or voltage are possible. The analog output is freely adjustable within the entire range of -20..+20mA or -10V..+10V.

Logical inputs and outputs

The AP40 has 4 digital inputs and 4 digital outputs.

For example the following functions can be assigned to the *inputs*:

- Reset error
- Keylock
- Start / stop cams
- Etc.

For example the following functions can be assigned to the *outputs*:

- Cams
- Error
- Cams active
- Etc.

Technical data

Supply voltage	1035 V DC (without power failure)		
	1635 V DC (with power failure)		
consumption	< 150 mA (without sensor-consumption)		
Output voltage	For external sensor		
+ Ud	max 400 mA depending on supply voltage		
+5V	max 400 mA		
Max. counting range	-9999999+99999999		
Cycle time	250 μs (fixed)		
Incremental input	Optically isolated		
Input frequency	Max. 150 kHz		
Impulswidth K0	Min. 2 μs		
SSI	Optically isolated		
clock-output	driver according to RS422		
clock-frequency	125 KHz (138,9 kHz if > 26 bit encoder signal)		
Digital inputs 14	Optically isolated; low: 0+5 V; high: +10 V+35 V		
Input resistance	Appr. 1.8 kΩ at 24 V		
Digital outputs 14	Optically isolated, N FET, short-citcuit proof; Imax 500 mA		
Supply voltage	35 V max.		
Voltage input	Galvanically isolated; max10 V +10 V; 16 bit		
Current input	Galvanically isolated; max20 mA +20 mA; 16 bit		
Voltage output	Galvanically isolated; max10 V +10 V; 16 bit; Imax ± 12 mA		
Current output	Galvanically isolated; max20 mA +20 mA; 16 bit; Rmax 550 Ω		
Serial ports	Ser-1 RS232 C		
	Ser-2 RS422/485		
Display	8 digit 7-segment LED; digit-height 10 mm		
Temperature range	050℃		
EMC	According to EMC directive 2004/108/EC		
	emission NEN-EN-IEC61000-6-3:2007		
	immunity NEN-EN-IEC61000-6-3:2005		
Weight	< 0.4 kg		
Sealing	front: IP50; rear: IP20		

Typekey

Accessories

CDS-B02	transparant protective DIN-hood with lock - IP54
CDS-B22	transparant cover made from soft plastic - IP65 (keys accessible)
EMC-B04	EMC-bracket to connect cables and shielding

Scope of delivery

Connectors, 2 fixings and EMC-bracket are within the scope of delivery. A CD with manuals and software is included.